Goto

Collaborating Authors

 Medford


Correcting Motion Distortion for LIDAR HD-Map Localization

arXiv.org Artificial Intelligence

Because scanning-LIDAR sensors require finite time to create a point cloud, sensor motion during a scan warps the resulting image, a phenomenon known as motion distortion or rolling shutter. Motion-distortion correction methods exist, but they rely on external measurements or Bayesian filtering over multiple LIDAR scans. In this paper we propose a novel algorithm that performs snapshot processing to obtain a motion-distortion correction. Snapshot processing, which registers a current LIDAR scan to a reference image without using external sensors or Bayesian filtering, is particularly relevant for localization to a high-definition (HD) map. Our approach, which we call Velocity-corrected Iterative Compact Ellipsoidal Transformation (VICET), extends the well-known Normal Distributions Transform (NDT) algorithm to solve jointly for both a 6 Degree-of-Freedom (DOF) rigid transform between two LIDAR scans and a set of 6DOF motion states that describe distortion within the current LIDAR scan. Using experiments, we show that VICET achieves significantly higher accuracy than NDT or Iterative Closest Point (ICP) algorithms when localizing a distorted raw LIDAR scan against an undistorted HD Map. We recommend the reader explore our open-source code and visualizations at https://github.com/mcdermatt/VICET, which supplements this manuscript.


Let The Earth Open

#artificialintelligence

A game that can be won." NEW! listen to the first 15 minutes The first in a planned trilogy, "Let the Earth open" is a fast-paced speculative thriller, In which Allison Evans, an AI researcher and entrepreneur from Medford, Massachusetts, creates a revolutionary and powerful new AI. A groundbreaking technology so advanced that it just might be humankind's last invention ever. It's a time when we, as humans, are tossed into a maelstrom so deep that we quickly find ourselves lost in unfamiliar chaos. One that confronts us with a darkness that arises both from what is outside of us, as well as the one that is within.


Learnability and the Vapnik-Chervonenkis dimension

Classics

Valiant’s learnability model is extended to learning classes of concepts defined by regions in Euclidean space E”. The methods in this paper lead to a unified treatment of some of Valiant’s results, along with previous results on distribution-free convergence of certain pattern recognition algorithms. It is shown that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned. Using this parameter, the complexity and closure properties of learnable classes are analyzed, and the necessary and sufftcient conditions are provided for feasible learnability.JACM, 36 (4), 929-65